Faster R-CNN 提出了一种全新的目标检测框架,将候选框生成和目标分类合并到一个网络中,实现了端到端的训练,可以同时优化候选框生成和目标分类任务,提高了检测的准确性和效率。同时,利用共享的卷积特征可以加速特征提取的计算,进一步提高了检测速度。在本节中,将介绍 Faster R-CNN 的工作原理,然后在自定义数据集上训练 Faster R-CNN 目标检测模型。